从简单的整数到神秘的虚数,这些数的类型你必须搞懂!
数的从简世界:从简单到复杂的奇妙探险
你有没有想过,数是单的到神什么?
从小学开始,我们就被告知有 0, 1, 2, 3这些自然数,整数柳州市某某计算机维修网点之后又认识了 负数和 分数,虚数接着又跳进了 无理数的类型大海,在高中的必须某个时刻还初识了更神秘的 虚数。
数的搞懂世界就像是一个庞大的家族,有各种各样的从简“成员”,它们各自扮演着不同的单的到神角色。那么,整数今天我们就来一次有趣的虚数“数之世界”探险,看看它们是类型如何从简单到复杂,逐步构成数学的必须奇妙世界的。
![]()
自然数:数的搞懂柳州市某某计算机维修网点起点
从最简单、最熟悉的从简自然数开始,即我们平时用来数东西的数:0, 1, 2, 3, 4, 5...。
自然数的一个重要特点是,它们永远不会是负数:在自然数家族里,大家都是积极向上的小伙伴。
自然数帮助我们理解最朴素的“计数”,是数学的起点。
整数:有了“冷酷”的负数
然而,生活并不会一直阳光明媚,我们会遇到零下摄氏度或银行账户里显示的“负余额”:信用卡透支或房贷(提到这个话题,笔者心里总是沉甸甸滴~)。
为了描述这种现象,我们引入了 整数。整数不仅包括正数,还包括 负数,以及它们之间的平衡者——0。因此,整数的完整集合是:
ℤ = { …, -3, -2, -1, 0, 1, 2, 3, …}
整数不仅帮助描述正向的世界,也让我们理解“负面”的现象。
有理数:分配的艺术
![]()
当我们学会把一个苹果分给两个人时,有理数就应运而生了。
有理数是可以表示为两个整数之比(即分数)的数,形式如下: a/b,其中 a, b ∈ ℤ, b ≠ 0
(我们没法把苹果分给“0”个人,所以分母不能为零,不然数学家真的会抓狂)。
- 除以 0 没有意义:如果分母为 0,无法找到任何数乘以 0 得到非零的结果,这样就会导致数学上的矛盾。
有理数,比如 1/3, 355/106, -2/3,甚至整数本身也是有理数,因为它们总是可以写成 n/1 的形式。
有理数的作用无处不在,但凡涉及“分配”或者“比例”,它们就会闪亮登场。
实数:无理数的加入
有理数家族已经够庞大了,但你以为这就是全部了?不不不,欢迎来到更广阔的实数世界!实数不仅包括有理数,还包括那些无法用分数表示的“神奇数”——无理数。
![]()
无理数的名字听起来有点“无理取闹”。要知道,古希腊毕达哥拉斯学派坚信,所有的事物都可以用整数或整数之比来表达:世界应当是整洁、有理且可以度量的。
不过其中一位成员希帕索斯在研究边长为 1 的等腰直角三角形的斜边长度时,发现结果竟然是 √2。他尝试用整数或分数来表达这个结果,可失败了——它无法用两个整数的比来表示,它的小数部分是无限不循环的,比如 √2 = 1.414213562373095...
![]()
就这样一直延续下去,还永远找不到重复的规律。
常见的无理数还包括:π(圆周率)、e(自然对数的底数)、φ(黄金分割比)、√3 等。
因此,实数包括了所有的有理数和无理数,形象地说,实数就是数轴上所有的点,从左到右,无穷无尽。
![]()
代数数 vs. 超越数:谁更高深?
接下来,会遇到了两个稍微抽象的概念:代数数和超越数。
代数数是那些能够成为某个整数系数多项式方程解的数。比如,3x² - 9x + 6 = 0 的解是 x = 1 和 x = 2,因此它们两个是代数数。
代数数不仅包括有理数,还包括一些无理数。比如,√2 就是方程 x² - 2 = 0 的解,φ 是方程 x² - x - 1 = 0 的解,所以它们也都是代数数的一员。
但并不是所有的数都能被整数系数多项式方程“驯服”。有些数,无论你如何组合整数系数的多项式,它们都不会成为解。这些数被称为超越数。
最著名的例子就是 π 和 e。无论你怎么组合整系数的多项式,它们就是不愿意成为方程的解。
复数:虚数和实数的完美结合
你以为故事就到这里结束了?不,欢迎来到 复数的世界。复数是由一个实数部分和一个虚数部分组成的,形式为 a + b,其中 是虚数单位,也是方程 x² + 1 = 0 的解—— 也是一个代数数。
![]()
虚数听起来有点像魔法,但它们非常实用,特别是在物理学、电力学和工程中有广泛的应用。通过复数,人们可以处理那些仅用实数无法解决的问题。
数的世界远不止于此
数的世界远不止这些,还有许多更高级的数系等待探索。
比如,四元数和 八元数扩展了复数,帮助人们处理三维和更高维的旋转问题;p 进数则在数论中扮演着重要角色,它通过质数的视角重新定义了“距离”,并为数论中的整除性和同余问题提供了强有力的工具。还有 超复数,如 双曲数和 双数,它们在物理和工程中有着特殊的应用,尤其是在处理时空几何和自动微分问题时。如果你认为无穷小只是微积分中的抽象概念,那么 超实数将颠覆你的想法,它们让无穷小和无穷大的操作变得严格且可行。
每一种数系都是理解世界的钥匙。而你我,正站在这条通向无限的道路上,保持好奇心,勇敢追寻!
(责任编辑:娱乐)
-
全国人大常委会会议12月27日表决通过了关于召开十四届全国人大四次会议的决定。根据决定,十四届全国人大四次会议于2026年3月5日在北京召开。 政协第十四届全国委员会日前召开主席会议,建议全国政
...[详细]
-
[杨柳获拳击女子66公斤级银牌]拳击女子66公斤级决赛,杨柳获得银牌。 更多报道:杨柳获得巴黎奥运会拳击女子66公斤级银牌澎湃新闻) 北京时间8月10日凌晨,巴黎奥运会拳击项目继续进行,在女子
...[详细]
-
新加坡的国大几乎一直都是稳居QS排名前10的大学,每年吸引着无数留学生前去求学。近日,许多中国留学生为了办理学生证,连夜在国大体育馆外打地铺,这一等就是一个晚上。许多网友都表示,这届中国留学生,真的是
...[详细]
-
北京时间8月10日凌晨,中国选手宋佳媛以19米32获得巴黎奥运会女子铅球铜牌。当天决赛开始时突然下雨,场地较为湿滑,运动员状态一定程度上受到影响。宋佳媛赛后说,之前自己对于雨天比赛也比较恐惧,今天
...[详细]
-
△泰国尖竹汶府和柬埔寨拜林省之间的常设边境检查站 当地时间12月27日,泰国和柬埔寨代表召开边界总委员会第三次特别会议,双方在泰国尖竹汶府和柬埔寨拜林省之间的常设边境检查站,就两国停火问题签署联合声
...[详细]
-
北京时间8月11日,国际奥委会主席巴赫表示,在2025年第二个任期结束后将不再连任。巴赫称,不会谋求延长任期,也不会改变奥林匹克宪章中关于主席任期最长不得超过12年的规定。 据悉,新一届国际奥委
...[详细]
-
北京时间8月10日,在巴黎奥运会摔跤女子自由式57公斤级决赛中,中国选手洪可新夺得铜牌。点击进入专题: 2024年巴黎奥运会 奥运早晚报
...[详细]
-
巴黎奥运会激战正酣,“奥运经济”也持续升温。从各类体育用品、奥运手环,到“冠军同款发夹”,在浙江义乌国际商贸城,国际客商来往穿梭,与奥运相关的产品订单不断。 奥运赛事场场精彩 奥运生意款款爆单
...[详细]
-
新能源车高速上电量耗尽 2人下车推行被撞身亡 交通安全提醒→
新能源车高速上电量耗尽 2人下车推行被撞身亡 交通安全提醒→2025-12-29 08:55:00 来源:国家应急广播微信公众号
...[详细]
-
当地时间8月9日,加拿大外长乔利宣布对白俄罗斯10名个人和6个实体实施制裁。 据悉,这些措施是加拿大与欧盟、英国和美国等国协调后实施的。总台记者 张森)
...[详细]

相继退出价格战 合资汽车品牌挺不住了?
马龙“最后一舞”?樊振东退役倒计时?